PHYSICAL REVIEW B VOLUME

1, NUMBER 6 15 MARCH 1970

Anharmonic Effect on Heat Capacity of Solids up to the Critical
Temperature of Lattice Instability

Yosu1AkI Ipa
The Institute for Solid-State Physics, The University of Tokyo, Roppongi, Minato-ku, Tokyo, Japan
(Received 9 October 1969)

Anharmonic contribution to the thermal energy is evaluated for solids at temperatures higher than Debye
temperature, with the assumption that anharmonic effects are expressed by the pseudoshift in the angular
frequency of normal mode. Here the angular frequencies are assumed to depend on the mean thermal energy
as well as on the volume. Both the thermal and caloric equations of state are derived systematically from the
same partition function of this extended quasiharmonic treatment. Heat capacity is calculated as a function
of temperature on the basis that the frequency shift occurs through the “vibrational elongation” introduced
by Ida in the theory of lattice instability. The calculation describes a qualitatively correct curve of heat
capacity. It is again shown that the lattice will be unstable above a critical temperature because of

anharmonicity.

1. INTRODUCTION

ECENTLY, Ida' pointed out that a lattice in-

stability is caused by anharmonicity at high
temperature. According to his theory, the thermal
energy of a lattice cannot exceed a critical value
however great the amplitudes of lattice vibration may
be, because there are pseudoshifts in angular frequencies
associated with the increase in the amplitudes. The
critical temperature was evaluated there by equating
the upper limit of energy per normal mode to 2T (% is
the Boltzmann constant, and T is the temperature),
but it was not taken into account that the thermal
energy itself also deviates from %I" because of anhar-
monicity. In the present paper we attempt to construct
a theory that describes the anharmonic contributions
to thermodynamical properties, consistently including
the deviation of the thermal energy from k7. The
examination of the treatment in a previous paper will
be done in Sec. 4.

Usual caloric measurements give the data of the heat
capacity C, at constant pressure, while the heat
capacity C, at constant volume is more desirable for
the comparison with theory. The conversion of C) into
C, can be made, in principle, by use of a well-known
thermodynamic relation between C, and C,. A small
correction for thermal expansion is also necessary.?
Although there is no question of this process itself, the
ambiguity of the thermodynamic data required for the
conversion tends to produce a fairly large uncertainty
in C,. In spite of this difficulty, it has been reported in
some cases that C, exceeds the value expected from the
harmonic theory. It is believed that this excess heat
capacity arises from the electronic heat,® the formation
of lattice defects,*® and anharmonicity. Recent careful
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investigations by Brooks and his co-workers!®!! show
that anharmonicity should have the most important
contribution to the excess heat capacity for some metals.
The theoretical approach to the anharmonic contri-
bution is, however, not so advanced. There are some
analyses for the case where the potential energy of
lattice is very well known.*7'® Some semiempirical
relations are also used to analyze the anharmonic effect
on C, 21719

The exact evaluation of anharmonic effects is a very
difficult problem. The usual treatment is based on the
theory in which cubic and quartic terms in the potential
energy are considered to be small perturbations.’s:%
Although a simple expression can be obtained for the
thermal equation of state from the quasiharmonic
assumption,” the caloric equation of state, i.e., the
relation between temperature and energy, is usually
evaluated by considering directly the complicated
terms involving the coupling parameters of higher
orders. This treatment of the caloric equation is, how-
ever, very disadvantageous because of great mathe-
matical difficulties, poor physical insight, and restricted
data of coupling parameters. Hence it is attractive to
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1 ~ANHARMONIC EFFECT ON HEAT CAPACITY OF SOLIDS:. .-

examine whether the quasiharmonic approximation can
include the caloric equation of state as well as the ther-
mal equation of state. Recently the idea that the an-
harmonic contribution to free energy is also expressed
by a pseudoshift of angular frequency was used by
Pastine? to calculate thermodynamic properties for
sodium metal. On the other hand, some efforts have
been made to justify this extended quasiharmonic treat-
ment on the basis of the perturbation theory.?32¢ This
problem was also investigated with the aid of phonon
thermodynamic Green’s functions.?” Although it has
been shown by these works that the extended quasi-
harmonic treatment is successful at least partially, a
systematic investigation of this kind of quasiharmonic
treatment has not yet been made. In Secs. 2 and 3 of
the present paper we shall study what thermodynamic
relations are derived from a simple assumption about
the pseudoshift of angular frequency. Both the thermal
and the caloric equation of state will be obtained from
the same partition function the usual manner of sta-
tistical mechanics. Throughout this paper we shall con-
sider only the case of higher-than-Debye temperatures.

2. PARTITION FUNCTION OF QUASIHARMONIC
SYSTEMS

The potential energy of a lattice can be expanded in
a series in terms of the displacements of atoms from
the equilibrium positions as

U=Ust+Us+Uan, 2.1

where Uj is the constant term, U, is the sum of quad-
ratic terms, and U, denotes the terms of higher orders.
If U, vanishes, the system is reduced to an assembly
of 3N independent oscillators (V is the number of
atoms), and the energy can be written as

3N
E= UO+Z (m—{—%)hwi ;

=1

2.2)

where w; is the angular frequency of ith normal mode,
and #; is the quantum number (#;=0, 1, 2,...). For a
completely harmonic system, any w; is independent of
the dimension of the lattice. In the quasiharmonic
treatment it is assumed that the displacements of atoms
are so small that U,y is negligibly small, compared with
Us, in considering the motion of atoms, but that the
coupling parameters involved in U, depend on the
initial state about which U is expanded. Thus w; is
considered to be a function of the volume. Thermal
expansion is interpreted by this kind of treatment.
Further, it is suggested by some authors®*2¢ that the
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2 R. A. Cowley, Advan. Phys. 12, 421 (1963).
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effect of anharmonicity on the caloric properties can
also be treated by a pseudoshift of w;. In this treatment
we must recognize that w; depends not only on the
volume, but also on the temperature. We begin our
study by considering the physical meaning of this
suggestion.

We may understand that the pseudoshift of w; at
elevated temperatures is essentially of a purely dynamic
origin; the shift is caused by some interaction among
normal modes from anharmonicity. Since the strength
of the interaction depends on the amplitudes of the
lattice vibration, the shift may be determined by the
state of the excitation of lattice. It is thus considered
most generally that w; depends on each #7;. Remem-
bering, however, that there are so many normal modes
that statistical treatment is possible, we can expect
that w; is effectively determined by a few of the quanti-
ties that represent, on the average, the degree of
excitation. Here we adopt the simplest assumption that
w; depends only on the mean energy e of normal modes:

wi=wi(v,€), (2.3)
which provides our starting point. In Eq. (2.3) the
dependence of w; on the volume v (per atom) is also
included. The relation between temperature and energy
is derived from the function w;(v,e) in the manner of
statistical mechanics. The partition function Z is
evaluated as

Z= / B8 (E)dE, (2.4)

where 8=1/kT. The state density g(E) is defined so
that g(E)dE equals the number of quantum-mechanical
states between E and E-+dE. In the quasiharmonic
treatment, g(E)dE may be replaced by the number of
distinct sets (#4,72,. . .,n3y) satisfying

3N
E—Uo<Y. niwi(v,e) < E—UgtdE,

=1

(2.5)

where zero-point energy is neglected. Here we should
notice that e is related to E:

E=U,+3Ne. (2.6)

In the case where 3Ne is sufficiently larger than any
value of 7uw;, the number of the sets corresponding to
Eq. (2.5) can be easily evaluated (Appendix A), and
thus we have :

. ﬁ o . (E—=U,)3¥-1 on
g( )—[H i(v,€) ] m, .

which is applicable to higher-than-Debye temperatures.
In the integration in Eq. (2.4), v is regarded as a fixed
parameter. Substituting Eq. (2.7) into Eq. (2.4), we
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have

Z=[(BN-1)! ﬁ heoi(2,0)

=1

X / (E—Uo)¥1e 8¢ (v, 3NdE, (2.8)

where

s<v,e>=[i=11 wi(0,) w0, (29)

Using Eq. (2.6), we can rewrite Eq. (2.8) as

(3NN 3N
Z=———€BU]] hw;(»,0)]"
BN-1)! =1
X/ e[ X (v,6,8) P¥de, (2.10)
0
where

X (v,e8) =ee P£(v,6) I

Only the expression of Z for large V has meaning in the
evaluation of macroscopic properties.

We shall consider the asymptotic form of Eq. (2.10)
for infinitely large N. The function [X (v,e,8) Y for
large N will have a very steep maximum at the value
. that maximizes X (v,¢,8) itself, and the integral in
Eq. (2.10) must be determined almost entirely by the
behavior of X (v,¢,8) in the vicinity of e,. Thus we can
expect the following expression of Z, neglecting some
factors independent of V:

(3N)3N—1/2 3N

Z~ ———e—BUv[H 100;(2,0) TI[X (9,€.,8) Y. (2.12)
@BN-1)! i=1

(2.11)

A more exact derivation of Eq. (2.12) is shown in
Appendix B. The values of e, are determined by the
condition that X (v,¢,8) is maximum at e=e,, i.e.,

(aX/ae)v,ﬁzox

where the subscripts », 8 denote the partial derivative
at constant » and constant 8. From Eq. (2.11), Eq.

(2.13) yields
1 9
- —ﬁ=<— lng) .
€ de »

We shall find that this is an important equation, which
gives the relation between temperature and energy.

(2.13)

(2.14)

3. THERMODYNAMIC RELATIONS

We shall obtain thermodynamic relations from the
partition function Z of Eq. (2.12) and show that
anharmonic effects on various properties can be evalu-
ated from the function £(v,¢). The mean energy e for a
given temperature is calculated from the relation
EF=—(3InZ/0B),. Using Eq. (2.13), we have

(3.1)

€e=¢,.
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Equation (3.1) means that e is determined so as to
maximize X (v,¢,8), or to satisfy Eq. (2.14), for a given
v and 8. The Helmholtz free energy F is calculated as

1§ 3N
F=U,+ B S Inhw;(v,0)+ —(Be—1—Ine+Ing). (3.2)
i=1 B8

In the derivation of Eq. (3.2), Stirling’s theorem
Inn!=n Inn—n is used. Equation (3.2) is also written as

1 s~ € 1
F=Uy— - In —I—3N<e— —) . (3.3)
B =1 huw(v,€) B

Comparing Eq. (3.3) with the relation F=E—S/kg,
we have the following expression for the entropy S

€

S=k[§§ In (3.4)

=1 hw(v,€

an |-

We notice that Eq. (3.4) can also be obtained from the
relation S=k Ing(X).

The thermal equation of state is determined by the
relation P=—(3F/dV)g, where P is the pressure, and
V is the total volume, i.e.,

V=Nv.
Using Eq. (3.2), we have

aU,
P=——

3ve 3 Jde 1/0¢€
o 16,6
av B B dv/g  €\dv/g
a
dv B

3.7

(3.5)

where

1 s~
yo= — — 3 dInVd[Inw:(,0)].

3N =t

The last term in the right-hand side of Eq. (3.6) is
rewritten as

() 229 0o

and hence, using Eq. (2.14), we find Eq. (3.6) is reduced

to
alUy 3 d Ing
et ()]
av  Bv dInv/

Remembering Eq. (2.9), we can rewrite Eq. (3.9) as

(3.9)

P=—(dUo/dV)+(3v'/Bv), (3.10)
where
1 ¥ /9 Inw;(v,¢)
y=——3 <—> . (3.11)
3N i=1 0 Inv .
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Equation (3.10) is analogous to the Mie-Griineisen
equation of state but, as is shown later [see Eq.
(3.18)7], v’ does not always agree with the Griineisen
parameter vy specified by

v=VKa/C,, (3.12)

where K is the isothermal bulk modulus, and « is the
thermal expansivity.
The heat capacity C, is obtained from the relation

Jde Jde
C, =3N<—~> = —3Nkﬂ2<—) .
oT a8

v v

(3.13)

The quantity (de/dB), is given by differentiating both
sides of Eq. (2.14) with respect to 8. Thus

1 92 —1
C,= 3N/eﬁzl:- —!—(——— lné) :I .
e 0 »

To obtain the expression of isothermal bulk modulus
K, we differentiate Eq. (3.10) with respect to V. After
simple calculations, we have

(3.14)

@aUy, 3y’ vy’ de\ /9y’
L )] o
dav: gL /. \dv/g\de/,

The above equation can also be written as

d2U0 3 Yo
K=V -

dvo 9% In¢
+ ==+ )
ar:  ploe dv 0% /.

9% Ing\? 9% Ing\ T
—ve2< >|:1+(:2< )] } , (3.16)
dvde e /,
which is a convenient form to evaluate X from a given
function £(v,e). The differentiation of Eq. (3.10) with

respect to 7" gives a relation involving a. Comparing
the resulting relation with Eq. (3.15), we have

|

K:

K7 2C, 3% In¢
Ka= —(7'— X ) ) (3.17)
2 3NEB dedv
Coupling Egs. (3.12) and (3.17), we obtain
3Nk v &It
y=—7'—--X ) (3.18)
Cv ,8 0edv

which predicts the difference between v and v'.

In the #sual quasiharmonic treatment, in which the
dependence of w; on € is not taken into account, £(v,e)
is always equal to unity. In this case we have the
relations corresponding to the Dulong-Petit law,

e=1/8 and C,=3N%, (3.19)

from Egs. (2.14), (3.1), and (3.14). We also find that
expression (3.3) agrees with the high-temperature form
of F given by the harmonic approximation, and that
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relation (3.10) becomes identical with the Mie-
Griineisen equation of state. It is also noted that Eq.
(3.18) gives only v'=+ in this case.

4. ANHARMONIC EFFECT THROUGH
VIBRATIONAL ELONGATION

We have an approximate method to evaluate £(v,e).
It was shown in my previous paper (I) that the time
average of interatomic distances becomes larger than
the equilibrium distances as a result of lattice vibration.
The fractional increase of interatomic distance is called
‘“‘vibrational elongation” and denoted by Q. The
quantity Q can be written in terms of the amplitudes
of lattice vibration [Eq. (10) in I, or in terms of the
energy ¢ of each normal mode. If each ¢; can be re-
placed by the mean value ¢, and if a linear dispersion
relation [Eq. (11) in I

wi=csf (41)

is assumed (f is the length of the wave vector), we
have the following expression of Q:

0 e<1+4
- 15m\c,? 622>’

where m is the mass of atoms, and ¢; and ¢, correspond
to the sound velocities for longitudinal and transverse
lattice waves, respectively. In I we replaced e involved
in (4.2) by kT to determine approximately the tem-
perature corresponding to the lattice instability. Here
we can examine the relation between e and 7' more
exactly, using the discussions in Secs. 2 and 3. We
assume, as in I, that anharmonicity affects ¢, through
Q analogously to thermal expansion, and that this
effect is expressed by a unique parameter b as

(4.2)

Cs=Cs06 9,

(4.3)

where ¢, depends only on the volume. From Egs.
(4.1) and (4.3) we have

wi(v,6) =w;(v,0)e"42, (4.4)
where
g=250, (4.5)
and hence we obtain the expression of £(v,e):
In¢(v,e) = —39. (4.0)

The relation between ¢ and e is given by substituting
Eq. (4.3) into (4.2), as follows:

ge 9=he,

26 /1 4
h= ——(—— + —~> .
lSm 6102 0202
The quantity /% is considered to be a function of v only.

From (4.6), Eq. (2.14) yields
1/e—B=—3(9g/0€),.

4.7)
where

(4.8)

(4.9)
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Evaluating (d¢/d¢), from Eq. (4.7), we have
(1/e—B=—3%he?/(1—9q).

It is convenient to introduce new variables 6 and #
specified as

(4.10)

(4.11)
(4.12)

u=he.

The quantities § and # are proportional to temperature
and energy, respectively, when the volume is kept
constant. In terms of 6 and #, Egs. (4.7) and (4.10)
are written as

(4.13)

(4.14)

geI=u,
(1/u)— (1/6)=—3e4/(1—q).

The values of # and ¢ as a function of 6 were computed
numerically from Eqgs. (4.13) and (4.14) with the aid
of a FacoM 270-30 computer and are given in Table I.
The ¢-6 curve has a maximum corresponding to the
upper limit of lattice stability at constant volume, and
the critical point is given by ¢,=0.4563 and 6,=0.2037.
The heat capacity C, can be computed from Eq. (3.14).
After some simple calculations we have

e (o= T -

Numerical values of C,/3Nk are also given as a function
of 6 in Table 1.

The thermal equation of state is given by calcu-
lating (d¢/dv). from Eq. (4.7). Substituting the re-
sulting expression into Eq. (3.9), we have

dUy, 3 u dlInk
b Y g

dav - Bv 0 d Iny
The volume dependences of dUo/dV, v,, and dInk/
d Iny must be known to determine the P-8-V relations
by Eq. (4.16). Here, for a rough estimation, we again

use the same simplified assumptions that are adopted
in I. First we use the series expansion up to the linear

TaBiE I. Thermal energy #, heat capacity C,/3Nk, and vibra-
tional elongation ¢ as a function of temperature 6 at constant
volume.

0 " C,/3N q
0 0 1.000 0
0.02 0.0202 1.022 0.0206
0.04 0.0409 1.047 0.0427
0.06 0.0621 1.078 0.0664
0.08 0.0841 1116 0.0922
0.10 0.1069 1.165 0.1205
0.12 0.1308 1.231 0.1523
0.14 0.1563 1.326 0.1888
0.16 0.1842 1,482 0.2324
0.18 0.2166 1.810 0.2893
0.20 0.2637 3.742 0.3892
0.2037 0.2891 o 0.4563

YOSHIAKI IDA 1

term as the expression dUo/dV :

dUo/dV=—P+K0(7)—'I)o)/7)0, (4.17)

where 7y is the volume at 7=0, and K, is the bulk
modulus at 7=0 and v=1v,. The volume v, is deter-
mined so that the equation —dUo/dV =P is satisfied
at v=1v,. Assuming that the effect of Q on the shift of
w; i1s equivalent to that of the fractional increase of
lattice dimension, and remembering Eq. (4.3) [see
also Eq. (14) in I, we have

?—70
wi(2,0) =w;(0,0) exp(—%b > .

%o

(4.18)

q

F1c. 1. Relations between the reduced vibrational elongation ¢
and the reduced temperature 7 at constant pressure. Curves are
obtained for various z by use of (4.26).

Thus we have approximately, from Eq. (3.7),

vo=1b. (4.19)

If b is not strongly dependent on volume, we obtain
from Eq. (4.8)

h=ho[1+3b (v—10)/v,]. (4.20)

Thus we have

dInh/d lnv=3%b. (4.21)
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Using Eqgs. (4.17), (4.19), and (4.21), and noting Egs.
(4.13) and (4.14), we rewrite (4.16) as

V—7 b 1
Vo Ko?)oﬁ l—q ’

(4.22)

which corresponds to Eq. (26) in I. From Egs. (4.11),
(4.20), and (4.22), we have

] 20 1
— =1+ —_ (4.23)
ho 3,3K0‘Z)0 1—q
I I I Al I I
04— z2:03
03 - 2:05 N
~
2207
o2}~ -
7 =09
ol |- |
1 | ! ! 1 !
0 o.l 02 03 04 05 06

-g—b (v=y,)/ v,

F16. 2. Relations between the reduced volume 2b(v—2,)/vo and
the reduced temperature = at constant pressure. Curves are
obtained for various z by use of (4.25) and (4.26).

Since 6 is not always proportional to 7' at constant
pressure, we introduce a new variable 7 [see Eq. (28)
inT], as

T= 2b2/37)0K0,3 . (424)
Then Eqgs. (4.22) and (4.23) yield, respectively,
V—7 T
2b = , (4.25)
Vo 1—¢
[ T
— =14+ — (4.26)
2T 1—gq
where
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TasLE IT. Mi, (3).

z Mi, (2) Gm

0 ] 0

0.1 0.8450 0.3546
0.2 0.5344 0.3700
0.3 0.4022 0.3801
04 0.3260 0.3876
0.5 0.2756 0.3935
0.6 0.2395 0.3983
0.7 0.2122 0.4023
0.8 0.1908 0.4058
0.9 0.1734 0.4088
1.0 0.1591 0.4114
1.1 0.1470 0.4137
1.2 0.1367 0.4158
1.5 0.1130 0.4209

Coupling Eq. (4.26) with (4.13) and (4.14), we obtain
the values of ¢, 6, and # as a function of 7, and thus
the value of (v—uvo)/vo with use of Eq. (4.25). The ¢-7
curves, given in Fig. 1 for various z, have a maximum,
which corresponds to a limit of lattice stability under
constant pressure. We write the maximum value 7,, as
a function of z as

Tm=Mii(z) (4.28)

analogously to Mi(z) in I. The values of Mi;(z) given
in Table II are slightly different from Mi(z). The
difference reflects the appreciation of the temperature-
energy relation in the present treatment. Temperature
dependences of the volume are drawn in Fig. 2 for
various 2.

5. DISCUSSION

First we shall examine the results obtained in Sec. 4
in comparison with observations. Equation (4.28)
coupled with (4.24) gives a critical temperature, above
which the lattice is not stable. In Table III we give
the values of the critical temperature with the melting
point observed for cubic materials. Although the calcu-
lated values are fairly scattered because the equation
of state is too simplified, it seems that the agreement
becomes better than in Tables IT and IIT of Ref. 1. To
examine Eq. (4.15) for heat capacity, we plot against
6 some experimental values”'128 with the theoretical
curve, as is shown in Fig. 3. In plotting experimental
data, we determine the relation between 6 and T by
assuming that 7/7,, is equal to 7/7,. When C, is not
obtainable, only the data of C, are given in Fig. 3. The
theory explains that heat capacity increases rapidly
close to the melting point, deviating from a linear
relation. Quantitatively, however, it seems that the
theoretical value overestimates the anharmonic effect,
even if we assume all the excess heat in experimental
data is caused by anharmonicity. Equation (3.10) is
almost identical with the Mie-Griineisen equation of
state, except when the temperature is close to the

critical point. Quantitative examination requires more

28 N. S. Rasor and J. D. McClelland, J. Phys. Chem. Solids 15,
17 (1960).
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TasLe IIL Critical temperatures of lattice instability for cubic
materials calculated from (4.28) coupled with (4.24). Data sources
and the arrangement of data for the calculation are mentioned in
Sec. 5 and in Tables II and IIT in Ref. 1.

Twm (°K) Twm (°K)

(calc) (obs)
Li 375 453
Na 328 371
K 373 337
Cu 1497 1356
Ag 1069 1234
Au 890 1336
Al 1088 933
Pb 517 600
Mo 6723 2893
Ta 4259 3300
LiF 1390 1112
LiCl 1072 886
NaCl 1017 1073
NaBr 1006 1028
KF 1184 1153
KCl1 948 1043
KBr 836 1003
KI 858 1046
RbBr 1017 955
RbI 584 915
MgO 3685 3073
TIBr 642 733
CaF, 1785 1633

careful treatment than in Eq. (4.25), and more precise
experimental determination of thermal expansion near
the melting point.

If we use the perturbation theory to evaluate an-
harmonic contribution to heat capacity,’® cubic and
quartic terms among U,, should give only the con-
tribution that changes linearly with temperature. One
may thus think that the rapid increase in C, close to
the critical temperature is caused by increasing con-
tribution of higher than fourth-order terms. This
opinion, however, is not completely correct. It is rather
because of the cooperation of different modes that C,
deviates from a linear relation. Once the anharmonic

T ) T T

/
]
/
200 /

1.50 /] -
7/

Heat Capacity / 3Nk

1.00 -

020

F16. 3. Heat capacity as a function of the reduced temperature
6. The theoretical curve expresses the value of C, given by (4.15).
The experimental curves without the mark of C, are the data of
Cp. Data sources are Refs. 7 (Na, K), 10 (Cu), 11 (Al), and 28
(Ta, Mo).
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interaction among various modes reduces w; according
to Eq. (4.4), the amplitude of vibration, or ¢, must be
increased to compensate the decrease of w; and to keep
the energy constant [see Sec. 3 in I']. Therefore, w; is
again reduced by this secondary increase of g. The
anharmonic effect is thus amplified similarly to the
case of well-known cooperative phenomena. Since each
energy level becomes lower as a result of the anhar-
monic interaction, the intervals between energy levels
are more reduced by the cooperation among the modes.
This means that the entropy is rapidly increased in the
vicinity of the critical energy at which the cooperation
becomes rapidly stronger so that lattice instability
occurs. That is the reason why heat capacity is in-
creased as we approach the critical temperature.?
Here it should be added that the increase of heat
capacity close to the melting point has also been
explained by the formation of lattice defects.*® It is
not clear at present whether the overestimation of
excess heat capacity means some essential inadequacy
of the theory or simply the roughness of the present
treatment.

Our expression (3.3) of F involves the term
3N (e—1/B), being different from that used by Barron?®
or Pastine?; the latter has the same form as the
expression for a harmonic lattice. The distinction
between the two treatments arises from the assumption
in ours, that the frequency shift should have a purely
dynamic origin. According to a formal treatment,
different pseudoshifts of w; must be assumed to under-
stand anharmonic behavior, depending on different
thermodynamical quantities.???® This self-inconsistency
seems to be caused by a formalism that is too simple,
in which the expression for the harmonic lattice is also
used for anharmonic crystals without any modification,
except that the frequency in the expression is regarded
as temperature-dependent. If the extended quasi-
harmonic treatment has the meaning beyond simple
mathematical convenience, the true shift of w; must
be uniquely determined, and various thermodynamical
quantities should be obtained from this substantial
shift. Our formulation in this paper is based on this
philosophy. In addition, it is interesting that, while
the term 3N (e—1/8) plays an important role in de-
riving the expression (3.14) of heat capacity, the
effect of this term does not appear explicitly in the
expression (3.10) for the thermal equation of state.
The concept of vibrational elongation may give a
physical picture to our philosophy, even if it is an
approximate picture. It is known that the shift of w;
can be actually observed by the experiments of neutron
scattering.?73 The examination of our theory in

29 With regard to the discussion to connect the energy-entropy
relation with thermodynamic properties, one may refer to F.
Seitz, The Modern Theory of Solids (McGraw-Hill Book Co., New
York, 1940), p. 478.

% L. Bohlin and T. Hogberg, J. Phys. Chem. Solids 29, 1805
(1968).
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comparison with this experimentation is,interesting,
but it is too complicated a problem to consider here.
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APPENDIX A: STATE DENSITY OF
QUASIHARMONIC SYSTEMS

We shall derive here expression (2.7) of g(E) by
evaluating the number of distinct sets (n1,%s,. . .,735)
belonging to the region of Eq. (2.5). If we fix the energy
E, or €, g(E) is concerned with only the value of w,
corresponding to the fixed e in question. Thus we can
determine g (k) as follows. First we evaluate the number
gu(E")dE' of distinct sets (n1,7s,. . .,mr) that satisfy

M
E'SY na;SE'+dE,

=1

(A1)

regarding each a; as constant, and then we equate g(E)
to gu(E’), putting E'=E—-U, M=3N, and
a;=hw;(v,e). If we know the function Gy (E’) defined
by the number of the sets (ni,ns,...,my) that are
included in the region

M
2 nia; S E,

=1

(A2)

we can obtain gy (E’) as

gu(E)=dGy(E")/dE, (A3)

where each a; is kept constant at the differentiation.
The integer ny extends from zero to [E'/ay] (the
symbol [x] denotes the maximum integer that is equal
to, or smaller than x), when every a; is positive. Thus
we have

[E’/anm]

Z GM._l(El—'dMnM).

ny=0

Gu(E)= (A4)

If E'/ayy is sufficiently larger than unity, we can replace
the summation by an integral. Introducing the variable
xu=E'—ayma, we have ‘

1 ¥
Gu(E)=— Gu—1(xar)dxar . (AS5)
ap Jo
Using Eq. (AS5) successively, we have finally
M E’ M
GuE)= (L0 [ dow [ o
=2 0 0
x3
X/ dx:Gi(x2). (A6)
0

2495

Noting G1(E")=E’/a,, we have

M E'M
Gu(E)=(I a)'—. (A7)
=1 M!
Using Eq. (A3), we obtain g (E’) and thus g(E) in
Eq. (2.7).

APPENDIX B: ASYMPTOTIC
FORM OF EQ. (2.10)

We shall evaluate the asymptotic form of the integral

)

IM=/ e[ X (e)]Mde (B1)

for infinitely large M. For simplicity we assume that
the function X (e) is not negative for any € and it has a
maximum at e=e¢, so that

X'(e)=0 and X"'(e)<O0. (B2)
Putting ¥ (¢)=X (¢)/X (e.), we have
Ty=M""[X (e) 1"/, (B3)
where
]M=M1’2/ e[V (e) ]Mde. (B4)
0

For an arbitrary positive number 8, J is divided into
the sum of the three integrals over the regions e,—é
SeSe+0, 0Sese,—0, and e+ 0=e< ». Since ¥ (¢)
is smaller than unity for any e belonging to the last
two regions, the contributions of these two integrals
can be made as small as we want, if we take sufficiently
large M. Here it is of course assumed that the integral
in Eq. (B4) converges for any positive integer M. Thus,

eetd

e[V (e)J"de. (BS)

lim Jp=lim M‘”/
M- M-

€e—0

Noting V(e.)=1, ¥'(e)=0, and ¥"(e,) <O [see Eq.
(B2)], we can expand the function InY(e) about
€=¢€, aS

In¥ (9= —3|7"/(e) | (e— e+ -

If a sufficiently small value is chosen as §, the quadratic
term in Eq. (B6) can express In¥ (e) for e between
e.—0 and e+ 6 with sufficient accuracy, and the integral
in Eq. (BS) can be replaced by

(B6)

€etd
M1/2ee——1/ e~ (MI2)| Y (ee)| (e—ee)?(] ¢ ,

€e—0
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which is reduced for large M to

00

M1/2e._1/ e~ (M2)1 Y7 (ee)| (e—eed? e,
—00

Therefore we have
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Then, using Eq. (B3), we have the asymptotic form

27X (e,) T2
In~er| ——— | MUX(e)]¥.  (BS)
)

Now we find that the factor e, [2rX (e.)/| X" (e.) | J42
is neglected in the expression of Eq. (2.12).

Em Ju=e2x/| V" (eo)| J¥2. (B7)
PHYSICAL REVIEW B VOLUME

1, NUMBER 6 15 MARCH 1970

One-Phonon Excited States of Solid H, and D, in the Ordered Phase*}
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Optical-phonon frequencies of ordered solid Hy and D, have been calculated using a Lennard-Jones
intermolecular potential derived from measurements of gas-phase properties. Good agreement with experi-
ment is obtained. Density-of-states functions and phonon dispersion curves in three directions have also

been computed.

INTRODUCTION

HE lattice dynamics of solid hydrogen and deu-
terium cannot be treated by the traditional
harmonic approximation.! The molecules are so light
and the intermolecular forces so weak that the zero-
point kinetic energy is equal to about half of the subli-
mation energy,? and the harmonic approximation, when
attempted, gives imaginary energies of excitation.?
Nosanow and Werthamer? have developed a means
of treating the lattice dynamics of such crystals and
have reported reasonable agreement between calculated
and experimental sound velocities in solid *He and “He.
We report here the application of this method to the
calculation of phonon frequencies and density-of-states
functions for the fcc phases of orthohydrogen and para-
deuterium. A similar calculation has recently been done
for hexagonal hydrogen by Mertens and Biem.?

T Work at U. S. C. supported by a grant from the U. S. Army
Research Office (Durham).

* Work at Minnesota supported in part by the U. S. Atomic
Energy Commission.
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The approach of Nosanow and Werthamer assumes
a ground-state wave function of the form

1/10(1‘1,1'2, e ;r") =H ¢0(ri_7‘i) kI<I1 f(Irk —I l ) ) (1)

where ¢o(r—=) is a function of one molecule at r,
the equilibrium position of which is a lattice point
7, and the short-range correlation functions f(p)
=exp(—K[ (¢/p)2—(c/p)%]). Here K is a variational
parameter and the intermolecular potential v(p)
=4¢[ (0/p)2—(0/p)¢], with® e=37.00°K and ¢=2.928

. An approximate treatment’” has shown that for solid
helium an appropriate ground-state one-particle func-
tion is

bo(r) = (4 /m)Plte 472, 2

The effect of the short-range correlations may be
looked upon as a replacement of the assumed inter-
molecular potential v(p) by an effective potential*

W (p)=[v(p) — (#*/2u) V*Inf(p) 1 f*(0) (3)

where u is the molecular mass. By using linear response
theory and several approximations, it is found that the

6 J. O. Hirschfelder, E. F. Curtiss, and R. B. Bird, Molecular
Theory of Gases and Liquids (John Wiley & Sons, Inc., New York,
1954), p. 1110.

7 L. H. Nosanow, Phys. Rev. 146, 120 (1966).



